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2 Cheng et al.

Abstract The objective of this study is to evaluate to what extent the7

CMIP5 climate model simulations of the climate of the 20th century can8

represent observed warm monthly temperature extremes under a chang-9

ing environment. The biases and spatial patterns of 2-, 10-, 25-, 50- and10

100-year return levels of the annual maxima of monthly mean temper-11

ature (hereafter, annual temperature maxima) from CMIP5 simulations12

are compared with those of Climatic Research Unit (CRU) observational13

data considered under a non-stationary assumption. The results show that14

CMIP5 climate models collectively underestimate the mean annual max-15

ima over arid and semi-arid regions that are most subject to severe heat16

waves and droughts. Furthermore, the results indicate that most climate17

models tend to underestimate the historical annual temperature maxima18

over the United States and Greenland, while generally disagreeing in their19

simulations over cold regions. Return level analysis shows that with re-20

spect to the spatial patterns of the annual temperature maxima, there are21

good agreements between the CRU observations and most CMIP5 sim-22

ulations. However, the magnitudes of the simulated annual temperature23

maxima differ substantially across individual models. Discrepancies are24

generally larger over higher latitudes and cold regions.25

Keywords Temperature · Climate · CMIP5 · Extremes · Return Level ·26

Non-stationary27
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1 Introduction28

During the period 1979 - 1992, on average nearly four hundred people each29

year were killed in the United States by excessive heat (NOAA (1995);30

Kilbourne (1997)). In fact, in this period over the United States, exces-31

sive heat accounted for more reported deaths annually than hurricanes,32

floods, tornadoes, and lightning combined (NOAA (1995)). Furthermore,33

agriculture products such as wheat, rice, corn and maize can be signifi-34

cantly reduced by extreme high temperatures at key development stages35

(NOAA (1980); Hoerling (2013)). High temperatures also affect irrigation36

and evaporation (Sorooshian et al. (2014)), drought development (Aghak-37

ouchak et al. (2014)), energy production and consumption (Tarroja et al.38

(2014b)) as well as greenhouse gas emissions associated with energy pro-39

duction (Tarroja et al. (2014a)). Numerous studies indicate that tempera-40

ture extremes are likely to intensify in the future under different plausible41

climate scenarios (Alexander et al. (2006); IPCC (2007)).42

Climate model simulations have been widely used to study extreme43

weather and climate across different spatial and temporal scales. Recently,44

international climate modeling groups have provided Coupled Model In-45

tercomparison Project Phase 5 (CMIP5) historical and projected climate46

simulations (Taylor et al. (2012)). The scope of CMIP5 also is broader47

than previous model intercomparison projects (e.g. CMIP3), with carbon48

emission-driven Earth System Model (ESM) experiments now represented49

along with the typical concentration-driven atmosphere-ocean general cir-50

culation model (AOGCM) simulations (Meehl and Bony (2011)). Thus,51

the multi-model gridded CMIP5 datasets provide an unprecedented op-52

portunity to analyze and assess climate variability and change. However,53

model simulations are known to have high uncertainty (Kharin et al.54

(2013); Mehran et al. (2014); Liu et al. (2014); Sillmann et al. (2013)), and55



4 Cheng et al.

different methods have been develop to assess their consistency against56

observations (Gleckler et al. (2008); AghaKouchak and Mehran (2013);57

Phillips and Gleckler (2006)).58

In a recent study, Kharin et al. (2013) argued that the global warm59

temperature extremes in the late 20th century climate are reasonably sim-60

ulated by the CMIP5 models (differences in CMIP5 models and reanalysis61

data were within a few degrees oC over most of the globe). Furthermore,62

the study showed that the spread amongst CMIP5 models for several63

temperature indices defined by the Expert Team on Climate Change64

Detection and Indices (ETCCDI; Zhang and Zwiers (2013)) is reduced65

compared to CMIP3 models (see also Sillmann et al. (2013)). However,66

the inter-model differences of warm temperature extremes are generally67

large over land with a standard deviation of around 4 oC (Kharin et al.68

(2013)). Kharin et al. (2013) concluded that upward trends of warm ex-69

tremes exceed those of cold extremes over tropical and subtropical land70

regions. Morak et al. (2013) showed that there is a significant increase71

in the trend in warm temperature extremes during both boreal cold and72

warm seasons over the second half of the 20th century. Using CMIP573

simulations and observations, Hao et al. (2013) demonstrated that con-74

current warm/dry and warm/wet extremes have increased substantially75

in the second half of the 20th century.76

Return periods and return levels (also known as return values) are77

often used to describe and assess risk of extremes (Cooley et al. (2007);78

AghaKouchak and Nasrollahi (2010); Katz (2010); Cooley (2013)). In the-79

ory, the return period (T ) of an event is the inverse of its probability of80

occurrence in any given year. That is, the n-year return level corresponds81

to an exceedance probability (by an annual extreme) of 1/n. In the statis-82

tical literature, there are different definitions for return period and return83
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level; for alternative definitions, the interested reader is referred to Bonnin84

et al. (2004), Mays (2010), and AghaKouchak et al. (2013).85

In recent years, Extreme Value Theory (EVT) has been widely used for86

analysis of climate extremes and their return levels (Zwiers and Kharin87

(1998); Clarke (2002); Katz et al. (2002); Kharin and Zwiers (2005);88

Parey et al. (2010); Kunkel (2013); Cheng et al. (2014b); Cooley (2013)).89

Fisher and Tippett (1928) introduced the concept of asymptotic the-90

ory in extreme value distributions and laid the foundation for a gener-91

alized approach to extreme value analysis. Gnedenko (1943) mathemat-92

ically proved that three families of extreme value distributions - namely93

Weibull, Gumbel and Fréchet - can represent the limiting distributions94

of extremes in random variables. The Generalized Extreme Value (GEV)95

distribution is essentially a combination of these three distribution fami-96

lies, and has been applied in a variety of studies (Gumbel (1942); Smith97

(2001); Katz (2013)).98

Numerous studies indicate that climatic extremes (e.g., hot days, heavy99

precipitation) have increased significantly, particularly in the second half100

of the 20th century (Karl and Knight (1998); Easterling et al. (2000);101

Vose et al. (2005); Hansen et al. (2010); Villarini et al. (2011); Hao et al.102

(2013); Field et al. (2012); Wehner (2013)). In addition to their num-103

ber, the frequency of extremes has changed in the past, and is likely to104

change in the future (Milly et al. (2008); Easterling et al. (2000); IPCC105

(2007)). It is evident that ignoring time-varying (non-stationary) behavior106

of extremes could lead to underestimation of extremes and considerable107

damage to human life and society (McMichael (2003); Cheng and AghaK-108

ouchak (2014)). Therefore, it is necessary to assess non-stationarity in the109

CMIP5 climate models simulations, and to document the extent to which110

the model-simulated patterns are consistent with observations.111
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In most previous climate model evaluation studies, the first or second112

order statistics of models are compared against observations. The primary113

objective of this paper is to evaluate to what extent the CMIP5 model114

simulations of the historical climate of the period 1901-2005 can represent115

observed warm monthly temperature extremes under the non-stationary116

assumption. In this study, the GEV distribution is used to investigate117

the return levels of annual monthly temperature maxima considering a118

changing climate. The return levels of temperature maxima estimated119

from the CMIP5 climate simulations are compared with those of Climatic120

Research Unit (CRU) temperature observations.121

The remainder of the paper is organized as follows. In section 2, the122

data sets and study area are discussed. Section 3 presents the method-123

ology for non-stationary extreme value analysis. The results including124

representation of annual maxima in their return levels are provided in125

Section 4. Section 5 summarizes the main results and offers concluding126

remarks.127

2 Study Area and Data Resources128

Monthly observations of temperature provided by the Climatic Research129

Unit (CRU, New et al. (2000); Mitchell and Jones (2005)), available in130

a 0.5o spatial resolution, are used as reference data. In this study, 41131

CMIP5 historical monthly temperature simulations from 1901 to 2005132

are subjected to extreme value analysis, and a subset of 17 of these sim-133

ulations are investigated in more detail. These data sets represent the134

most extensive and ambitious multi-model simulations that contribute135

to the World Climate Research Programme’s CMIP multi-model dataset136

(Meehl and Bony (2011); Taylor et al. (2012)). For this extreme value137

analysis, the CMIP5 model simulations and CRU observations all are re-138
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gridded to a common 2 × 2-degree resolution. This regridding entailed use139

of bilinear interpolation, with special attention given to appropriate use140

of model-specific land fraction masks so as to minimize data distortions141

along coastlines. The selected models (Table 1) include physical climate142

models (without a prognostic global carbon cycle), as well as earth sys-143

tem models (with the designation “ESM” appearing in the model title).144

The former are run in a standard “historical climate” configuration with145

prescribed historically increasing CO2 concentrations and the latter are146

run with CO2 emissions (fluxes corresponding to the prescribed histori-147

cally increasing CO2 concentrations–designated as “ esm” experiments in148

Table 1).149

This study focuses on global land areas (excluding Antarctica) for150

which the CRU observations are provided. From CRU observations and151

CMIP5 simulations, pixel-based annual monthly temperature maxima152

(hereafter, annual temperature maxima) are extracted for estimation of153

extreme temperature return levels. It should be noted that the Hadley154

Centre has adopted an unconventional time model for all their CMIP5155

output data, with an endpoint in November rather than December of156

2005, and thus the HadGEM2 outputs include one month fewer data157

than those of the other models. This issue will not affect the results in158

the Northern Hemisphere since the annual maxima of monthly data do159

not often occur in December. However, it might slightly impact the anal-160

yses in the Southern Hemisphere.161

3 Methodology162

The cumulative distribution function (CDF) of the GEV can be written163

as (Coles (2001)):164
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Ψ(x) = exp

{
−(1 + ξ(

x− µ
σ

))
−1
ξ

}
(1 + ξ(

x− µ
σ

) > 0) (1)

where Ψ(x) refers to the limiting CDF of the block maxima of inde-165

pendently and identically distributed random variables (Leadbetter et al.166

(1983)). To avoid serial dependence in the data, in this study, only one167

value per year (annual maxima) is sampled for extreme value analysis.168

The GEV distribution models different characteristics of extremes us-169

ing three parameters θ=(µ, σ, ξ): location parameter (µ), scale parameter170

(σ), and shape parameter (ξ). The location parameter indicates where the171

extremes distribution is centered, whereas the scale parameter specifies172

the deviations around µ. The shape parameter describes the tail behavior173

of the GEV distribution such that ξ = 0, ξ < 0 and ξ > 0 represent the174

Gumbel, Weibull and Fréchet families, respectively (Coles (2001)). The175

GEV CDF (Ψ(x)) is defined for 1 + ξ(x−µσ ) > 0; elsewhere, Ψ(x) is either176

0 or 1 (Smith (2001)).177

The stationary form of the GEV has been studied and applied in nu-178

merous studies (Leadbetter et al. (1983); Coles (2001); Schlather (2002);179

Li et al. (2005); Reiss and Thomas (2007); Papalexiou and Koutsoyian-180

nis (2013)). Under stationarity, the model parameters are time invari-181

ant (Renard et al. (2013)). In practice, many environmental time series182

vary systematically in response to climatic change, and hence may ex-183

hibit non-stationary behavior (Zwiers and Kharin (1998); Solomon et al.184

(2007); Rootzén and Katz (2013)). In a non-stationary world, the GEV185

parameters are time-dependent and thus, the extremal properties of the186

GEV would vary with time (Meehl et al. (2000); Cheng et al. (2014a)).187

In most studies, the non-stationarity is accounted for by assuming the lo-188

cation parameter is a linear function of time, while keeping the scale and189
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shape parameters constant (Gilleland and Katz (2006); Cooley (2009);190

Katz (2010); Renard et al. (2013)):191

µ(t) = µ1t+ µ0 (2)

where (µ1, µ0) are regression parameters and t is the time. Technically,192

a more complex nonlinear model can also be used for non-stationary anal-193

ysis. However, a non-linear model would be more sensitive to the length194

of the record, and cannot be justified without an evidence of a nonlin-195

ear trend. Furthermore, including a trend in the scale parameter and/or196

shape parameter is straightforward. However, given a lack of evidence197

that they have changed substantially in the past across the globe, we198

have not included them in this paper. Given that the objective of this199

study is to evaluate return levels of the CMIP5 model simulations with200

ground-based observations, the most stable form of non-stationary ex-201

treme value analysis is used where the location parameter changes over202

time.203

In this study, a Bayesian framework is employed to estimate the GEV204

parameters. This Bayesian framework integrates the information brought205

by a prior distribution p(θ) and the observation vector −→y into the pos-206

terior distribution of the GEV parameters. For non-stationary GEV pa-207

rameter estimation, the Bayes theorem can be written as (Winkler (1973);208

Renard et al. (2006); Cheng et al., (2014)):209

p(θ|−→x ) ∝ p(−→x |θ)p(θ) =

Nt∏
t=1

p(xt|θ)p(θ) (3)
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p(β|−→x , y) ∝ p(−→x |β, y)p(β|y)

p(−→x |β, y) =

Nt∏
t=1

p(xt|β, y(t)) =

Nt∏
t=1

p(xt|µ(t), σ, ξ)
(4)

where β = (µ1, µ0, σ, ξ), and y(t) is the covariate value under non-210

stationarity. The parameters of the GEV distribution including µ0, µ1, σ, ξ211

are derived by generating random realizations from the posterior distri-212

butions of the model parameters using the Differential Evolution Markov213

Chain (DE-MC; ter Braak (2004); Vrugt et al. (2009)). In fact, the DE-214

MC, with a Metropolis-Hastings (Renard et al. (2013)) step to update215

each parameter, is used to derive a sample from the posterior distribu-216

tions of the GEV model parameters whose initial states are determined217

by a maximum likelihood method (Coles (2001)). A statistical method218

known as the criterion R̂ (Gelman and Shirley (2011)) is adopted for219

convergence checking. A detailed explanation of the parameter estima-220

tion approach used in this study is provided in Renard et al. (2013).221

Compared to the conventional Markov Chain Monte Carlo (MCMC) al-222

gorithm, the DE-MC exhibits faster calculation and convergence speed223

(ter Braak (2006)). In this approach, the parameters are estimated based224

on the posterior of the MCMC samples for each pixel separately.225

The fitted GEV distribution is then used to derive the return levels226

of annual temperature maxima of CMIP5 climate simulations and CRU227

reference observations. The median of the estimated location parameter,228

obtained from the DE-MC procedure, is used as the final location param-229

eter:230

µ̃m = median(µ(1), µ(2), ..., µ(t)) (5)
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While here the median of the DE-MC samples is selected form sim-231

ulations, more conservative quantiles (90th, 95th percentile) can also be232

used depending on the objective of the study (Cheng et al. (2014a)).233

It should be noted that the DE-MC Bayesian approach provides pos-234

terior distributions of the model parameters. For this reason, upper and235

lower bounds (or other quantiles) of uncertainty can be derived using the236

upper and lower bounds of the parameters’ posterior distributions.237

In this study, return levels in model simulations and observations are238

evaluated. The return level is defined as a function of the return period239

T explained above (Cooley (2013)):240

T =
1

1− p
(6)

where p is the non-exceedance occurrence probability. The non-exceedance241

probability can be obtained using either a non-parametric approach (Makko-242

nen (2006)) or a parametric distribution function such as the GEV. Here,243

the return levels of temperature extremes are computed for five return244

periods: T=2, T=10, T=25, T=50, and T=100.245

The presence of non-stationarity is tested by means of the commonly246

used Mann-Kendall trend test (Mann (1945); Kendall (1976)) at the247

α = 0.05 significance level. If the null hypothesis of no trend cannot248

be rejected, we assume a stationary climate. The stationary GEV-based249

p-return level (p-quantile curve, qp) can be derived as:250

qp = ((− 1

log p
)ξ − 1)× σ

ξ
+ µ, for ξ 6= 0 (7)

If the null hypothesis of no trend is rejected (data exhibits non-stationary251

behavior), we assume a non-stationary condition with respect to tem-252
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perature extremes. The non-stationary GEV-based return level is then253

estimated as:254

qp = ((− 1

log p̃
)ξ − 1)× σ

ξ
+ µ̃m, for ξ 6= 0 (8)

where µ̃m is defined in Equation 5 and p̃ is the corresponding proba-255

bility. It should be noted that the Mann-Kendall trend test is only used256

to avoid implementing a non-stationary model on a time series that does257

not exhibit a statistically significant change in extremes. However, the258

methodology is general and can be applied to the data, regardless of259

the underlying trend. To further evaluate the fit of the non-stationary260

model, the Bayes Factor (Kass and Raftery (1995)) is implemented to261

check the null hypothesis of no trend. The Bayes factor evaluates the262

null-hypothesis of no trend against the alternative using the posterior263

distributions of sampled parameters (Kass and Raftery (1995)).264

4 Results265

4.1 Representation of Annual Temperature Maxima266

In the first step, the annual maxima of CMIP5 temperature simulations,267

determined from monthly time series, are compared with those of the268

CRU observations. Figure 1 (top left) displays the mean annual temper-269

ature maxima from 1901 to 2005 as represented by CRU observations. The270

rest of the panels in Figure 1 demonstrate the differences between CMIP5271

climate simulations and CRU observations (CMIP5 model - observation).272

In this figure, positive (negative) values indicate overestimation (underes-273

timation) of the annual temperature maxima. Figure 1 shows the results274

for the 17 CMIP5 models listed in Table 1. One can see that the cli-275

mate models individually display different patterns of overestimation and276
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underestimation. The discrepancies between the model simulations and277

observations are primarily within ± 1 to 3 oC. However, local errors for278

some regions may be as high as ±10 oC (see also the empirical cumulative279

distribution of the mean error in Figure 2).280

Figure 1 shows that over the United States most models (except-281

ing HadGEM2-ES esm, CCSM4, CSIRO-ACCESS1-0, CESM1-WACCM,282

MIROC-ESM and CanESM2) tend to underestimate the mean annual283

temperature maxima by 1 to 3 oC. Here, CanESM2 instead substantially284

overestimates the mean annual temperature maxima. Over Australia,285

on the other hand, several models (e.g. CSIRO-ACCESS1-0, HadGEM2-286

ES esm, MPI-ESM-P and CanESM2) demonstrate little or no bias. Over287

Amazonia, the mean annual temperature maxima are mostly underesti-288

mated, except in a few models (e.g., GFDL-CM3, CanESM2) where they289

are overestimated.290

The results indicate that model simulations particularly diverge from291

one another over cold regions (e.g., northern Russia, and Canada) ex-292

cept for Greenland, where most models (but not MIROC-ESM and IN-293

MCM4 esm) underestimate the mean annual temperature maxima. Such294

a consistent underestimation could substantially impact model-based anal-295

yses of changes in ice-sheets, and snow/glacier melt studies. Krabill et al.296

(2004) reported that Greenland is losing coastal ice sheets quite rapidly297

(see also Ren et al. (2011); Kjær et al. (2012)). CMIP5 models’ underes-298

timation of annual maxima climatology implies that the ice loss rate in299

Greenland might be greater than that reported in model-based studies.300

Similar to the modeling results by Alley et al. (2005) and Reeh (1989),301

rapid ice-marginal changes may indicate greater ice-sheet sensitivity to302

warming than has been acknowledged previously. However, over other303

cold regions that are at most risk of accelerated ice melt (e.g. Alaska,304
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Northern Canada, and Siberia), most models tend to overestimate the305

mean annual temperature maxima relative to the CRU reference data306

(Figure 1).307

It is also noteworthy that the model simulations collectively under-308

estimate the mean annual maxima over arid and semi-arid regions (e.g.,309

Sahara, southwestern U.S.), that are most subject to severe heat waves.310

Considering the magnitudes of deviations from the CRU, there is a better311

agreement between CMIP5 simulations and observations in such subtrop-312

ical regions than in high-latitude cold regions. This is consistent with the313

findings reported in Kharin et al. (2007) based on CMIP3 climate model314

simulations.315

Figure 2 displays the ensemble mean (a), inter-model standard devia-316

tion (b), and range (c) of the annual temperature maxima in CMIP5 sim-317

ulations, as well as the empirical cumulative distribution function (CDF)318

of the mean error relative to observations (d). The figure shows that the319

inter-model variability and range of simulations are more variable over320

Siberia, the western United States, and parts of the Middle East and321

Sahara compared to other regions.322

4.2 Return Levels of Temperature Extremes323

Using the annual temperature maxima from CMIP5 multi-model simula-324

tions and CRU observations, temperature return levels are derived for dif-325

ferent return periods by fitting the appropriate type of GEV (stationary/non-326

stationary) to the block maxima of temperature extremes. Return levels327

of annual temperature maxima are derived and reported for the return328

periods T of 2, 10, 25, 50, and 100 years.329

As an example, Figure 3 shows the 2-year temperature return levels330

based on CRU observations (top left) and on the selected subset of 17331
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CMIP5 climate model simulations. In Figure 3, the global temperature332

values range from -11 to 35 oC. Overall, Figure 3 indicates that there333

are good agreements between the observed and CMIP5 simulated spatial334

patterns of 2-year annual temperature maxima, but that the magnitudes335

of 2-year annual temperature maxima represented by the selected CMIP5336

models differ substantially.337

Figure 4 presents the differences in CMIP5 simulated 2-year annual338

temperature maxima with respect to CRU observations. One can see that339

there are variations in both the magnitude and sign of the error of 2-year340

return levels across CMIP5 climate simulations. This implies that CMIP5341

climate models capture the spatial patterns of temperature extremes well;342

however, individual models may be biased with respect to observations.343

As shown, over most parts of the world, the biases are within ± 4 oC. For a344

higher return level, one expects the differences in temperature simulations345

to increase relative to observations. For example, Figure 5 presents the346

differences in 25-year-return annual temperature maxima, as simulated by347

CMIP5 models with respect to CRU temperature observations. As shown,348

the patterns of differences remain similar, but the range of differences349

between simulated and observed annual temperature maxima increases350

at 25-year return level relative to the 2-year return level.351

As another example, Figure 6 displays the 100-year return levels for352

the CRU observations and the selected CMIP5 simulations. One can see353

that the patterns of annual temperature maxima are similar to those of354

Figure 3, but with higher magnitudes of annual temperature maxima (as355

expected). The figure shows that the warmest months across the globe356

typically occur over the Sahara, the Middle East, and Australia. The357

differences in CMIP5 100-year simulated and observed annual temper-358

ature maxima are presented in Figure 7. As shown, the biases of the359
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25-, and 100-year return temperature simulations are larger than those360

of 2-year-return simulations in Figure 4. However, the spatial patterns361

of temperature extremes are in a good agreement with CRU observations362

and consistent across different return periods (compare the model sim-363

ulations with the upper left panels in Figures 3 and 6). Overall, the364

regional biases of simulated annual temperature extremes at high return365

levels (e.g., 100-year) are consistent with those of the lower return levels366

(e.g., 2-year).367

Not shown here for brevity are the spatial patterns and biases of 10-368

, 25- and 50-year return levels of extreme temperature simulations by369

CMIP5 models, which are consistent with the results presented in Fig-370

ures 3 to 7. For a quantitative evaluation of the extremal simulation by371

CMIP5 models, Figure 8(top) summarizes the Mean Error (ME) for all372

the 41 CMIP5 climate model simulations of 2-, 10-, 25-, 50, and 100-year373

annual temperature maxima return levels with respect to CRU observa-374

tions. As anticipated, ME values are larger at higher return levels. One375

can see that considering the global averages, most models overestimate376

the simulated return levels of the annual temperature maxima, while fewer377

models (e.g., FGOALS-g2, INMCM4 esm, NorESM1-ME) underestimate378

the temperature extremes. Among the models, FGOALS-s2, CanESM2379

and MIROC5 exhibit the highest global averages of the ME of the an-380

nual temperature maxima. Most models either systematically overesti-381

mate or underestimate the extreme return levels, except the BCC model382

experiments in which the shorter return levels (2- and 10-year) are un-383

derestimated and the longer ones are overestimated. Figure 8(bottom)384

displays boxplots of the differences between CMIP5 simulations and CRU385

observations. The figure shows medians, 25th and 75th percentiles, and386

whiskers (variability outside respective percentiles) of differences in Cel-387
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sius degrees. Figure 8(bottom) indicates that while local differences can388

be large, most differences (between 25th and 75th percentiles) fall within389

±2 Celsius degrees.390

The MCMC component of the DE-MC model used in this study al-391

lows the upper and lower bounds and confidence intervals of the tem-392

perature return levels to be derived based on all model parameters. The393

uncertainty bounds would be different across either models or space (sim-394

ulation grid boxes). As an example, Figure 9 shows sample uncertainty395

bounds, median, and the 5% and 95% confidence bounds of the annual396

temperature maxima based on the DE-MC for CRU reference data and397

over grid boxes in two different locations in Kansas, United States and398

eastern China under the non-stationary assumption. The figure confirms399

that the inference uncertainty is larger at higher return levels (e.g., be-400

cause of larger sampling errors). One can see that the uncertainties of the401

estimated return levels also vary over different regions. It should be noted402

that this approach provides uncertainties associated with the statistical403

analysis of extremes, but does not include uncertainties associated with404

model physics.405

As mentioned in Methodology Section, the initial assumption of sta-406

tionarity and non-stationarity by the Mann-Kendal trend test is tested407

using the Bayes Factor. As an example, for the selected locations in Figure408

9, the Bayes Factor results are provided for testing non-stationarity in ex-409

tremes to make sure the initial assumption from the Mann-Kendal test is410

reasonable (see Table 2). As shown in Table 2, the method confirms the411

initial assumption of non-stationarity by the Mann-Kendal trend test.412
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5 Discussion and Concluding Remarks413

The objective of this study is to evaluate to what extent the CMIP5414

climate model simulations can represent observed warm monthly temper-415

ature extremes under a changing climate. The biases of simulated annual416

temperature maxima are quantified for the selected CMIP5 models. Fur-417

thermore, the 2-, 10-, 25-, 50, and 100-year return levels of the annual418

temperature maxima from CMIP5 simulations are compared with those419

derived from CRU observations.420

The results show that most, but not all, CMIP5 climate models tend421

to underestimate the mean annual temperature maxima over the United422

States and Amazonia. The CMIP5 models particularly disagree with each423

other over cold regions (e.g., Russia, northern Canada), with the excep-424

tion of Greenland where most climate models underestimate the mean425

annual temperature maxima. This underestimation of the annual temper-426

ature maxima is likely to affect model-based representations of changes427

in ice-sheets and snow/glacier melt. In contrast, over Alaska, Northern428

Canada and Siberia, most CMIP5 simulations overestimate the annual429

temperature maxima compared to those derived from the CRU reference430

data.431

Over arid and semi-arid regions (e.g., the Sahara, southwestern U.S.,432

and Middle East), most climate models also underestimate the mean an-433

nual temperature maxima. Considering the magnitudes of deviations from434

the CRU, however, there is a better agreement between CMIP5 model435

simulations and observations in subtropical regions than in high-latitude436

cold regions.437

The return level analyses show that there are good agreements between438

the observed and CMIP5 simulated spatial patterns of 2-, 10-, 25-, 50-439

and 100-year annual temperature maxima. While the simulated spatial440
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patterns of the temperature extremes are similar, the magnitudes of the441

return levels of the annual temperature maxima represented by CMIP5442

climate models are biased with respect to CRU observations. In addition,443

there are variations in both the magnitude and sign of the biases of the444

annual temperature maxima return levels across the CMIP5 simulations.445

The results reveal that most CMIP5 simulations overestimate the global446

averages of the annual temperature maxima at different return periods447

(see Figure 8).448

Given the state of the science in climate modeling, one would not ex-449

pect the coupled Atmosphere/Ocean General Circulation Model (AOGCMs)450

and earth system models (ESMs) to reproduce the magnitudes of the ob-451

served historical extremes very accurately. Rather, one expects the models452

to reasonably simulate large-scale patterns of change in occurrences of cli-453

mate extremes (Tebaldi et al. (2006)). Overall, the results of this study454

indicate that the models capture the spatial patterns of temperature ex-455

tremes well, but that individual models are biased relative to the CRU456

observations.457

458

459
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461
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Fig. 1 Mean annual temperature maxima (in degrees Celsius) based on 1901-2005 Climatic
Research Unit (CRU) observations (upper left panel), and the differences between selected
CMIP5 climate simulations and CRU reference data (remaining panels).
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Fig. 2 (a) Ensemble mean, (b) inter-model standard deviation, and (c) range of the annual
temperature maxima in CMIP5 simulations. Panel (d) shows the empirical cumulative distri-
bution (CDF) of the mean error of simulations relative to observations.
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Fig. 3 2-year return level (in degrees C) of the annual temperature maxima based on the CRU
observations (upper left panel), and on selected CMIP5 climate model simulations (remaining
panels).
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Fig. 4 2-year return level (in degrees C) of the annual temperature maxima based on the CRU
observations (upper left panel), and return-level differences between selected CMIP5 climate
simulations and CRU reference data (CMIP5 - CRU; remaining panels).
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Fig. 5 25-year return level (in degrees C) of the annual temperature maxima from CRU
observations (upper left panel), and return-level differences between selected CMIP5 climate
simulations and CRU reference data (CMIP5 - CRU; remaining panels).
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Fig. 6 100-year return level (in degrees C) of the annual temperature maxima based on
the CRU observations (upper left panel), and on selected CMIP5 climate model simulations
(remaining panels).
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Fig. 7 100-year return level (in degrees C) of the annual temperature maxima from CRU
observations (upper left panel), and return level differences between selected CMIP5 climate
simulations and CRU reference data (CMIP5 - CRU; remaining panels).
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Fig. 8 (top): Mean Error (ME) of the 2-, 10-, 25-, 50-,and 100-year temperature maxima
(Degree Celsius) simulations based on 41 CMIP5 simulations relative to Climatic Research
Unit (CRU) observations; (bottom): boxplots of differences (degrees C) between CMIP5 2-
and 100-year return levels relative to CRU observations.
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Fig. 9 Sample uncertainty bounds, median, and the 5% and 95% confidence bounds of the
annual temperature maxima based on the DE-MC model for CRU reference and over two
pixels in a. Kansas, United States and b. eastern China.
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Table 1 List of 17 climate models/experiments whose simulations are displayed in Figures 1
to 7 and their related institutions and countries. The suffix “ esm” designates an historical
climate run of an ESM with prescribed emissions

Model/Experiment Institution Country

BCC-CSM1-1 esm Beijing Climate Center, China Meteorological Administration China
MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Japan

Atmosphere and Ocean Research Institute,
The University of Tokyo
National Institute for Environmental Studies

NorESM1-M Norwegian Climate Centre Norway
IPSL-CM5A-LR Institut Pierre-Simon Laplace France
GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory USA
CCSM4 National Center for Atmospheric Research USA
GISS-E2-H NASA Goddard Institute for Space Studies USA
INMCM4 esm Institute for Numerical Mathematics Russia
HadGEM2-ES esm Met Office Hadley Centre UK
CSIRO-ACCESS1-0 Commonwealth Scientific and Industrial Australia

Research Organisation,
and Bureau of Meteorology

MRI-ESM1 esm Meteorological Research Institute Japan
MPI-ESM-P Max Planck Institute for Meteorology Germany
CanESM2 Canadian Centre for Climate Modelling and Analysis Canada
FGOALS-g2 Institute of Atmospheric Physics China

Chinese Academy of Sciences and Tsinghua University
CESM1-CAM5 National Science Foundation, Department of Energy, USA

and National Center for Atmospheric Research
CNRM-CM5 Centre National de Recherches Meteorologiques France

Centre Europeen de Recherche et Formation Avancees
en Calcul Scientifique

CESM1-WACCM National Science Foundation, Department of Energy, USA
and National Center for Atmospheric Research
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Table 2 Results of the Bayes Factor at the selected pixels in the Central U.S. and East-
ern China. Bayes Factor (K) larger than one indicates the stationary assumption (i.e., null
hypothesis) is representative, whereas K < 1 rejects the null hypothesis.

Bayes Factor
Location K Test Interpretation
Kansas, USA 0.49 Reject Stationary Model
Eastern China 0.003 Reject Stationary Model


